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lRay-Optical Calculation of Edge Diffraction
in Unstable Resonators

CARLOS E. SANTANA, MEMBER, IEEE, AND LEOPOLD B. FELSEN, FELLOW, IEEE

Abstract—A previously developed ray-optical theory for calctda-

tirm of modal reflection and coupling coefficients due to edge

discontirmities in homogeneously or inhomogeneously filled parallel-
plane waveguides is generalized to waveguides with nonplanar bound-

aries. Treated in particular are the reflections from the open ends of
a bilaterally truncated waveguide whose convex walls are confocal
hyperbolas. This open configuration serves as a model for unstable
optical resonators with cylindrical mirrors. The ray optically deter-
mined modal reflection and coupling coefficients for mirrors with
large Fresnel number are shown to reduce to those in a previously

employed local parallel-plane approximation when the Fresnel
numbers are moderate. The analysis quantifies proposed ray-optical

models for explaining the influence of edge diffraction on the

behavior of the resonant modes.

I. INTRODUCTION

B

Y f~ FAIRLY recent generalization [1], [2], it has been

shown how high-frequency ray-optical techniques can

be adapted to the analysis of scattering by localized discon-

tinttities (small obstacles, edges, etc. ) in waveguides or ducts

filled with homogeneous or inhomogeneous dielectric

media. Basic to the technique is the ray-optical formulation

of the waveguide Green’s function, i.e., the radiation from a

source with an isotropic radiation pattern. This is then

generalized to nonisotropic sources with a radiation pattern

j(9),l where 6 is the angle measured from the waveguide axis

y. A localized discontinuity may be characterized by its

free-space diffraction pattern ~(f3,6i) when the incident field

is a uniform plane wave impinging from the direction 19i.

When the discontinuity is placed inside the waveguide and

illuminated by an incident waveguide mode, which can

locally be decomposed into uniform plane waves with

characteristic angles O;, the resulting~(@,O~ ) constitutes an

Manuscript received October 15, 1976; revised October 11, 1977. This
work was supported in part by the National Science Foundation under
Grant ENG-7522625, by the Joint Services Electronics Program under
Contract F 44620-69-C-O047, and in part by the Advance Research
Projects Agency of the Department of Defense, monitored by the Office of
Naval Research, under Contract NO0014-67-A-0438 -O017. It represents
part of a dissertation submitted by C. Santana to the Polytechnic Institute
of New York, Brooklyn, NY, in partial fulfillment of the requirements for

the Ph.D. degree in electrophysics.
C. Santana was with the Department of Electrical Engineering and

Electrophysics, Polytechnic Institute of New York, Farmingdale, NY. He

is now with the Institute of Space Research, National Council of Research,
12.200-Sao Jose Campos, San Paulo, Brazil.

IL. B. Felsen is with the Department of Electrical Engineering, Poly-

technic Institute of New York, Farmingdale, NY 11735.
1 Although three-dimensional problems can be treated by this method,

we consider here only the two-dimensional z-independent case.
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Fig. 1. Unstable resonator with hyperbolic mirrors. The resonator axis

lies along x and the waveguide axis along y. A typical modal caustic, an

ellipse with foci at x = td, is shown, together with one congruence of

u!+oing modal rays. Ray A strikes the upper edge, and f,l,+ is the propa-
gation angle of the corresponding local plane wave field m thejth mode.
A similar congruence of downgoing modal rays has been omitted, as has
the corresponding picture for the left half of the resonator. For very
slender caustics, all modal rays appear to originate at the foci. The edges
of the mirrors are located at i>, ji, or ~ in the various coordinate
systems defined in the text; the analogous designation for the modal
caustic is ACj or C=j.

equivalent nonisotropic source whose excitation of modal

fields may be calculated from the solution referred to above.

In this manner, one derives by ray-optical techniques the

modal reflection, transmission, and coupling coefficients

(the scattering matrix elements) for a discontinuity inside

the waveguide. The lowest-order, single diffraction solution

so obtained may be refined by accounting for multiple

diffraction effects due to interaction between the singly

diffracted fields and the waveguide boundaries. For details

of the method, the reader is referred to previous work

[2]-[6].

The ray optical technique has already been applied to the

study of discontinuities in waveguides of various types [6],

[7]. In the present paper, it is shown how it can be applied to

the important problem of unstable open optical resonators.

Because of their good mode selectivity and large mode

volume, such structures appear to be most promising for use

with laser sources of high and even moderate gain [8]. By

recent studies performed independently in the United States

[9], [1O] and the Soviet Union [1 1], it has been shown that
the unstable resonator can be regarded as a waveguide

whose boundaries are the convex resonator mirrors, and

whose axis is transverse to the resonator axis (Fig. 1).

Resonance in this open waveguide is established by self-

consistent reflection of a propagating waveguide mode

between the edge discontinuities formed by the rims of the
mirrors. Although the waveguide is very strongly

overmoded, it has been shown that near the cutoff condition,
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which is of interest for the resonator problem. mode cou-

pling due to the mirror edges is confined essentially to

adjacent modes. Thus a very simple model involving selec-

tive coupling between two waveguide modes has been

developed, and has been found capable of explaining the

intricate eigenmode loss behavior determined by numerical

solution of the resonator integral equation [9], [10]. While

the role of mode coupling has been alluded to in the Russian

work [1 l], it has not been incorporated into their analysis.

The Soviet calculations are based on a single mode analysis,

which is adequate only near eigenmode loss minima, and

does not provide the peculiar interconnections between

successive loss minima found in the numerical results.

A further attribute of our analysis [9], [10] is the avoidance

of the resonator integral equation, which forms the basis of

the Soviet approach to the waveguide problem as originally

formulated by Weinstein [12], and followed thereafter by

others in the Soviet Union [11], [13]. By avoiding the

integral equation, it is possible to decompose the unstable

resonator problem into conventional microwave network

constituents involving propagation (waveguide) and discon-

tinuity regions. By this separation, one may also extend the

analysis to resonator configurations which are filled with

inhomogeneous and/or active materials, and to mirror

shapes which depart from the conventional circular con-

tours. These aspects are presently under investigation.

While the ray optical principle of localization is conson-

ant with the microwave network approach, the reflection

and coupling coefficients due to the mirror edges were

previously [9], [10] not calculated by the ray-optical method

described earlier. Instead, these coefficients were taken from

Weinstein [12] by modeling the region near the edges locally

as an open-ended parallel-plane waveguide. Since the ray-

optical method synthesizes the reflection and coupling

coefficients by direct edge scattering, it is of interest to

examine whether the two procedures yield the same result.

This is especially important for resonators with moderately

large Fresnel numbers,2 where the local parallel-plane

approximation near the edges is more difficult to justify

since the slanting of the convex waveguide boundaries is

then not negligible. It will be shown that the single-diffraction

ray optically evaluated reflection and coupling coefficients

are identical with those obtained by Weinstein from the

rigorous solution of the open-ended parallel-plane wave-

guide problem when the characteristic angle of the incident

mode is not almost 90” with respect to the waveguide walls;
this is the range of interest for the moderately large Fresnel

number regime. This confirmation then suggests that the

single diffraction ray-optical model may be used with

confidence for large and very large Fresnel numbers where

the local parallel-plane approximation is clearly in doubt.

The reflection and coupling coefficients derived here may

then be regarded as more reliable than any of those available

heretofore. Although the ray optical edge diffraction

2 The Fresnd number is defined as N = k7z/4zL; k IS the wavenumber
and Y and L are given m Fig, 1.
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Fig. 2 Bisected wavegwde configuration

mechanism has been proposed as an explanation of the

numerically observed eigenmode loss behavior [14] -[16],

this fact has not been incorporated into a systematic modal

theory. Such an incorporation is performed in this paper.

The presentation follows the format outlined at the

beginning of this Introduction. The Green’s function for the

waveguide with hyperbolic boundaries is developed in

Section II. This is followed in Section 111 by modifications

required to accommodate a nonisotropic source with radia-

tion pattern,f (6). Section IV deals with the local plane-wave

decomposition of the incident mode field impinging onto the

edges of the truncated waveguide boundaries, and the

subsequent calculation of the edge diffraction pattern func-

tion ~ (fl,[l~: ). This information is then utilized for extraction

of the modal reflection and coupling coefficients.

The analysis is similar to that performed previously for a

parallel-plane waveguide filled with a plane-stratified

medium [2]. However, in the present instance it is necessary

to perform a generalization to account for nonplanar

boundaries. Concluding remarks are made in Section V.

II. THE WAVEGUIDE GREEN’S FUNCTION

We seek a solution of the equation

(V2 + k’)G(p,p’) = -6(P - p’), p = (,u,q) (1)

subject to the boundary conditions

(la)

G=O at q=~ql (lb)

and a radiation condition at ,u ~ K. A time dependence

exp ( – icot) is suppressed. Here, p and q are constant

coordinate surfaces in an elliptic coordinate system (Fig. 2).

The boundary condition (lb) identifies G as the single-

component electric field E ~ E=, and the source as a suitably

normalized line of :-directed electric currents. Since we shall
be interested only in field solutions which are even with

respect to the y = O plane, the boundary condition in (la)

has been imposed and effectively bisects the waveguide.

In terms of waves propagating along the y (or p) direc-

tions. the Green’s function can be represented as:

G(p,p’) = ~ ‘n(v~(q’)gn(p,}t’)
n n

(2)

where

. VI
N: = @:(q) d?! (2a)

–ql



SANTANA AND FELSEN: RAY-OPTICAL CALCULATION OF EDGE DIFFRACTION 103

k the squared normalization constant for the eigenfunctions where p< and p. denote the lesser and greater of the values

@.(q). The latter satisfy the source-free one-dimensional of p and p’, respectively. Since O s p 4 1 in the range of

equaticm interest (the waveguide region is to be truncated at P 4 1 to

[ 1
form the resonator with finite mirrors),

* + lZ2(b# – sin2 v) %(q)= 0, h=kd (3) mate cosh2 ,u zz 1 + p’. Introducing

with b. representing the modal eigenvalue and
( = (2h)l/2Jt,

one may approxi-

(3a)
j = (2h)1/2g,

The one-dimensional Green’s function g.(p,p’) satisfies the
~n=:~~?n=~(bi–1) (8)

scmrce-excited equation

[ I

where p,. locates the turning point (modal caustic) Of the
;; + h2(cos h2p – b:) gn(w’) = –d(p – u’) (4) approximated differential equation (4), one may write

with

@=O at 1~=0, (
$ + : – P.) ;n(Lqc’) = ~(c – c’) (9)

dp

radiation condition at }L- m. (4a) with boundar” conditions Con-espmding to (4a). The SOIU-

The eigenfunctions @.(q) were determined previously [9].

Assuming that the turning points ~C. = A sin-1 b. lie out-

side the domain – ql K q E ql (this is the case for the modes

of interest), and since h is large, one may employ the WKB

approximations for ~.(q):

i.(~) = (b: -Sin211)1’2 (5)
with b. defined by (3a) via

. .V1

h ~fl(~) d~ = nn, n = integer (5a)
‘-VI

or approximately as [9],

where

b:%z
nn – 2kL

klnM ‘1’
(5b)

M=l+2y +2&, U=y+yz, y = L/r. (5c)

M is the linear magnification, and y is the ratio of the

resonator half-length L, measured along the x axis, to the

radius of curvature r of the mirrors on this axis. When

the sine function in (5) is expressed as the sum of two

exponential, and the result is then substituted into (2a), one

observes that two of the resulting integrals contribute
negligibly because of rapidly fluctuating integrands. Thus

The evaluation of the integral in (6) is based on the

approximation b. x 1, which applies to the modes of interest

(see [9]).

The modal Green~s functi~n gti(p,p’) can be constructed in

terms of solutions F. and F., which satisfy the source-free

ecpation (4), and the boundary conditions at p = O and
p + w, respectively [17]:

tions F. and F. are now constructed in terms if parabolic

cylinder functions [10], and yield

()~~+i.
ii=e“pn’2(2im) 4 2

(iJ_i&
42

1 ()/_i&

42
0 D,,(z<) i- i(2-ip”)

()

I‘ D-v_, (iZ<) D,)(Z>)
~~+i.

42 I

(lo)

where

~ = ~e-ifl/A ~= –+_” lpn . (lOa)

For observation points c > I ~cn[, ~,n = 2 Ip. 1“2, i.e., far

enough from the modal caustic at KC.,one may employ the

WKB approximations for the parabolic cylinder functions

A(l)D,,(z) - [4.(()]- 1’

[1
“

“ exp i “’ #n(<) d< + in/4
!

(ha)
‘ [c”

where

4.((3 = ($- P.)”2 (llC)
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and the phase reference in (1 la) and (1 lb) has been taken at

CC..Defining

one may write for (10)

The first term in (13) represents the direct contribution from

the source point at ~’ to the observation point at;, while the

second term describes a wave that has traveled from the

source point to the modal caustic and thence to the observa-

tion point. The reflection coefficient due to the caustic, as

seen from the observation point, is given by the ratio of the

reflected and incident waves as:

[-
R.([)N Bn exp 2i

I
j;: M{) d< > (14)

which has been given previously [10].

When the results in (.5) and (13) are substituted into (2),

one obtains the WKB approximated Green’s function for
(<(!:

If the source is located on the lower wall or the upper wall,

one puts ~ (n + (1:+) = O and ~ (n + 6;-) = O, respectively

[2]; the pattern functions now represent the respective far

zone fields of the source in the presence of the boundary

whereon it is situated.

IV. REFLECTION COEFFICIENT FOR THE

OPEN-ENDED WAVEGUIDE

A. General Formulation ,for Large Fresnel Numbers

When the waveguide in Fig. 2 is truncated at c = t,

reflection occurs from the open end. By the ray-optical

method, the modal reflection and coupling coefficients are

calculated from the single-edge diffraction patterns. This

requires first a determination of the local plane-wave fields

that illuminate the edges, Assume that an incident field E~in

the ,jth mode is normalized so that

EJ(q,~) - E; (q>() + E,- (%L) (19)

where Ej~ and E~– represent the local plane wave constitu-

ents (modal-ray congruences) traveling toward the upper

and lower boundaries. respectively.

EJ* (~,~) = ~ [2iNj[~J(q)@j(~)]1’z] -1

, /- “q’
.C

exp +dI I ~j(z) d7 + i dj(~) d~~. (19a)
‘7 ‘ cc,

111. RESPONSETO A DIRECTIVE SOURCE

The Green’s function in (15) represents the field excited by

a line source of strength

Go(lP-P’l)=;HL’’(klP-P’l)-; (nk,p2_p,l]1’2
~exp [ik\p – p’ I – in/4]. (16)

When the source has a radiation pattern~((?) so that its far
field is

Go - G. j’(g), (17)

it can be shown by a generalization of the procedure in [2]

that the response in the waveguide may be calculated by

decomposing the sourcepoint dependent eigenfunction
@~(q’) into its local plane-wave constituents, and multiplying

these by~(n + O~t ), where fl~~ are the propagation angles of

the local plane waves in the nth mode at the source point.
Thus the field G at 1 c <’, produced when the directive

source in (17) is placed inside the waveguide, is given by

Then the strengths of the local plane-wave fields striking the

upper and lower edges are E; (q ~,t) and E; ( – ~ ~,~), respec-

tively; note that when q = – q ~,the first exponential in (21a)

reduces to ( – 1y, in view of (5a). The angles of incidence /3~

of the local modal plane-wave fields with respect to the

tangent planes to the mirrors at the edges are obtained from

the orientation of the phase gradients (i.e., the modal rays) in

(19a); as shown in Fig. 1, the modal rays are tangent to the

modal caustic. It is shown in Appendix I that

2~2+1–bj
Cos /?+ =

2ji Cos ~~ “

b; = 1 + p:,, ~~j <1. (20)

‘l’he ddiractlon field due to the upper edge, observed at an

angle ~ with respect to the tangent plane at the edge. is now

given by (17) with the pattern function

~+(~’>~~) = E:(~l.~)V(P+lT) (21)

where V(/3+ ,flj~ ) is the known diffraction coefficient for a

perfectly reflecting half-plane illuminated by a unit strength

plane wave field incident at the angle fl~ [19]:

(22)
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The excitation of the nth waveguide mode by the equivalent

directive line source with ~+ (P +,fl~ ) located at the upper

edge involves the pattern function ~(rc + ~.+) in (18), with

~(n + (~- ) set equal to zero. When referred to the edge-

centered coordinate system, ~(rc + f3~+) is equivalent to

~+ (F;,fl~ ) where ~; is the modal ray angle for the ~th mode
at the edge. Similar considerations lead to the pattern

function ~(rc + O;-) ~~- (fl.- ,fljT ) descriptive of the lower

edge. The resulting nth mode amplitude excited by both

edges represents the coupling coefficient rj. due to an

incident jth mode field, while rjj represents the reflection

coefficient in the incident mode.

When the preceding results are substituted into (18), one

obtains for the total reflected field E,j due to an incident

mode ]:

r .C .Z 1

and it has been recognized that ~~ = ~~ = ~.,

p: = fl,~ - flj. The reflected modal fields have here been

normabzed in the same manner as the incident mode in (19).

Note that the term multiplied by B. in (15) has been omitted

from (1.8) so as to eliminate fields that arrive at the observa-

tion point after a round trip to the center of the resonator;

such fields are not relevant for determination of edge

reflection. One observes that rj. = Ofor odd values ofj + n,

in conformity with requirements imposed by structural

symmetry. The exponential phase terms in (24) arise because

the phase reference has been taken at the modal caustics;

these terms are absent when the phase is referred to the edges

at C = t. The coupling coefficient rjn in (24) represents the

lowest order approximation of the ray-optical solution

wherein only single (primary) diffraction at the edges is

accounted for. This result could be improved by inclusion of

multiple diffraction that occurs between the edges, but the

effect is small since the ratio of multiple to primary diffrac-

tion is 0[(2kL)- 1’2]. The formula in (24) is valid provided

that P. + ~j ~ n, i.e., the characteristic mode angle ~n does
not lie in the reflected-ray transition region associated with

the ray incident at the angle flj. Moreover, for validation of

primary diffraction as the dominant mechanism, one edge

should not lie in the reflected-ray transition region of the

other (this condition is more stringent than the one for

fin + flj). The necessary restrictions are derived in Appendix
II.

curved mirrors (small y in (5c)), the limiting form of (24) in

that parameter range is now examined. As noted earlier, the

modes of interest are those with caustics near the center of

the resonator. Thus the edges may be taken to lie far enough

from the caustics to justify VCn,,4 J. Moreover, p itself is

small. When these approximations are introduced, one

finds:

J“’(~~,~j) x (Sgn fln)(sgn Pj)

4ji Cos q~

(2jf + 1- b:) + (2p’ + 1- b~ (25a)

(1p 1-$ = (p’ - p:n)l” = (2/h) ’’24n(r). (25c)

Thus, when the phase reference is at the edges, (24) reduces

to

If account is taken of the normalization of the incident field

as in (19a), these expressions agree with the parallel-plane

formulas of Weinstein [12] for the case where ~~ and ~J differ

sufficiently from n/2 to ensure that one edge does not lie in

the reflected-ray transition region of the other. In that event,

single-edge diffraction is adequate to describe reflection

from the open-ended parallel-plane structure. As noted

previously [9], S. represents the modal propagation

coefficient in the equivalent parallel-plane waveguide whose

height equals that of the hyperbolic waveguide at ~.

When y is reduced further so that one edge does lie in the

reflected-ray transition region of the other edge, interaction

between the edges in the local parallel-plane model cannot

be ignored. The single-edge diffraction function must now be

replaced by a more accurate function derived from the

rigorous solution of the semi-infinite parallel-plane

configuration. The result as given by Weinstein [20],

modified to account for the different normalization of the

incident field used here, is as follows:

rjn = – i[(sn + Sj)(SnSj)12]- 1 exp [LJ(s.,6) + u(sj,d)] (27)

where b is defined by any of the equalities

2?r(j+ 6) nn – ML

in M
=Pn=; (b:– l)=

lnM ‘

The diffraction function U(s,d) is discussed in detail in [20],

and has the following asymptotic behavior:

U(s,a) -o, s large (28a)

B. Sirnplijcation for Moderate Fresnel Nwnbers

(1
U(s,d) - –; ;ln 2+” +ln(2s)

To check whether the general coupling coefficient in (24)

reduces to the local parallel-plane approximation for small

enough Fresnel numbers, and in particular for weakly
— :]s+” ””, s small (28b)



106 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-26, NO 2, FEBRUARY 1978

PL

t

50 L

4
( , t I 1 ●

3 4 5 6 7 8
‘EQ

Fig. 3. Ratio W of I rflfi I in (24) to I rnn I in (26), with pm= O (minimum

mode loss condition). The calculation is carried out for the parameters
ii = 100, y = 0,4 as in [10].

where ~ = 0.824. Thus (27) reduces to (26a) when S.,j are

sufficiently large (note that this condition can be met

although y is small). For small S.,j, one has

17jn = – 2(sn + sj)- l(snsj)l/2 exp 1 10
- (1 - i)p(sn + Sj) 29

~
L L J

which (noting thats. ~ sj here) was used in the analysis by

Chen and Felsen [9]. With formulas (24) and (27), noting the

overlap region in (26a), one may cover the entire range of

parameters from small to large Fresnel numbers for the

hyperbolic mirror resonator.

To ascertain the effect of the improved reflection

coefficient in (24), we have calculated the ratio W of I r.. I in

(24) to that in (26b). One observes from Fig. 3 that W

deviates substantially from unity even for moderate values

of the equivalent Fresnel number AJe~(for a definition of N,~,

see (34a)). Corresponding data for the losses in the

“detached” eigenmode [25] are plotted in Fig. 4. It is noted

that use of the reflection coefficient in (24) yields results

which agree more closely with the numerical solution of

Sanderson and Streifer [25] than those obtained from (26b).

Although the discrepancy in Fig. 3 between \ r.. I in (24) and

(26b) is considerable, the effect on the detached resonant

mode losses in Fig. 4 is relatively small because r.. is

0(10- 2) in that parameter regime. Nevertheless, the results

confirm the assertion that use of the ray optically deter-

mined reflection coefficient in (24) is expected to yield an

improvement over previously available formulations,

especially for large Fresnel numbers.

C. Effects of Smoothed Edges or Tapered Reflectivity

The dependence of rj. in (24) on V(~~j@j) implies that the

rzth mode reflected field is proportional to the strength of the

edge diffraction pattern along the direction of propagation

of the local modal plane-wave constituents in that mode. If

the edges can be shaped so that diffraction along P. is

minimal, then the resonant properties of the nth mode in the

open-ended waveguide should approach those in a wave-

guide with infinite mirrors. Since the infinite-mirror

(i,;)

%’
x

\

1,

p i #“:Tronsl,,.n
reg,on

Fig. 4, Power loss PL in the detached eigenmode of a hyperbohc strip

resonator, The calculation is carried out for ii = 100, y = 0.4 as in [10].

— use of (26 b), —–— use of (24). –––– Sanderson and Streifer
[25].

configuration has been investigated independently, it is of

interest to establish that the resonant fields derived for finite

sharp-edged mirrors reduce to those for infinite mirrors as

rj~ tends to zero. This transition is performed in Appendix

III.

V. CONCLUSIONS

A previously developed ray-optical analysis of scattering

by edge discontinuities in a parallel-plane waveguide has

here been generalized to curved waveguide boundaries.

When both boundaries are convex as in a hyperbolic

waveguide, and when the waveguide is truncated bilaterally

and symmetrically, the resulting doubly open-ended struc-

ture has found application as an unstable optical resonator.

For the determination of the resonant properties of this

open cavity, it is necessary to know the mode reflection and

coupling effects introduced by the edges. This has been done

by a generalized ray-optical technique. Accounting only for

primary edge diffraction, the resulting modal reflection and

coupling coefficients have been shown to be adequate for

resonators with large Fresnel numbers, because the contri-

bution from multiple edge diffraction is negligibly small. The

expressions so obtained are expected to be more accurate

than others employed heretofore (see Fig. 4). As the Fresnel

number is decreased, the modal reflection and coupling

coefficients reduce to those calculated for an equivalent

local parallel-plane geometry near the edges, thereby pro-

viding a smooth transition from the case of slanted, to that of

parallel boundary contours near the edges. While only

open-ended reflection has been treated here, the method

applies also to bifurcations, apertures, obstacles, etc. (for

these applications, see [7], [21]). The ray-optical approach to

edge diffraction introduces a viewpoint not usually asso-

ciated with obstacle scattering in waveguides. While ray

optical considerations have been employed for the unstable

resonator [8], [14]–[16] they have not previously been
incorporated into a systematic modal theory.

Because the diffraction process is localized near the edges,

the results presented here are applicable also to other

waveguide boundary shapes, provided that the change in the

waveguide cross section occurs sufficiently slowly, in terms

of the wavelength scale, to justify use of the WKB approxi-

mation for the wave functions. Moreover, subject to similar

criteria of slow variability, the method also accommodates

resonators filled with variable and/or active dielectrics.

These aspects are presently under study, and some results

may be found in [27].
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APPENDIX I

Determination of Propagation Directions

of Modal Local Plane Waves

In the elliptic coordinate system of Fig. 2, the WKB

phases kS~j and kSLj of the wave functions for the jth mode in
the q and ,u domains are, respectively,

liSvj = h i “ ~j(~) d~j kSPj = h ~“ @j(() d< (30)

where kI = kd, @J(p) = (coshz ~ – b~)l/2 and tj,(q)is given in

(5). The modal ray congruences for y >0 are directed along

VSJ*, where Slg = SVj f SVj. The angle ~J between an
incident modal ray and the boundary at q = q ~ is given by

Cos p,~ = Po “ Vs;

= (cosh’ p - b~)l’(cosh’ p - sin’ q,)- ‘/2 (31)

where p. is the unit vector along p. When p = ji < 1, this

expression reduces to (20).

APPENDIX II

Akstric[ions for Applicability of the

D@raclion Coeflcient in (.2.2)

The exterior of the reflected-ray transition region for the

case of a plane wave incident at the angle @o on a perfectly

conducting half-plane is given by [19] (in this Appendix,

~ denotes the angular coordinate) - -

where Q is a constant of the order of

? = 14 – @O I are Polar coordinates with

(32)

unity; p and

respect to the

edge,” with ~ measured from the reflected-ray direction $..

If one edge of the resonator of Fig. 1 is to be outside the

reflected-ray transition region of the other edge, then (32)

has to be satisfied for p and ~ as indicated in Fig. 5.

Introducing the approximation that the edges of the resona-

tor are located at x = ~ d sin ql, which supposes ,iz<1, we

find for the case bj = 1, i.e., when the modal caustic degener-

ates in[o a straight line between the foci (this is relevant

near loss minima of a resonant mode [9], [10]):

p = 2d sin VI (33a)

(33b)

Insertion of (33a) and (33b) into (32) yields the following

condition for applicability of the diffraction coefficient in

(22):

~ > Qzull’

eq -(l +27 - 2a’/’)

where IV,~ is the equivalent Fresnel number

()Neq=;M–;

(34)

(34a)
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N is the ordinary Fresnel number, and M is defined in (5c).

The relations

HSinql= 1+! ‘1’2 yd = 1.ctl’2 (34b).!(

were used in the derivation of (34).

To give some indication of the restriction implied in (34),

we note, for example, that for Q = 3 and y = 0.4, one finds

N.~ >0.813. Thus (22) applies even for relatively small

values of N,~.

APPENDIX HI

Resonant Mode Solutions for Mirrors with Smoothed Edges

If the mirror edges at I ~ I = ~ in Fig. 1 are perturbed, or if

a tapered-reflectivity boundary is joined to the waveguide in

the region I ~ I > ~, the analysis presented here remains

applicable provided only that V(~JJ in (24) is replaced by

the diffraction coefficient appropriate to the modified edge

discontinuity. Because the intricate patterns of resonant-

mode losses and resonant-mode fields are attributable to the

strong diffraction caused by sharp-edged mirrors, there has

been considerable interest in assessing the effects of a

reduction of edge scattering [14]–[16]. In particular, if edge

diffraction back toward the foci at x = t d in Fig. 1 can be

eliminated, the resulting resonant-mode field should be well

approximated by the geometric optical field comprised of

two cylindrical waves emanating from the foci [22]. The

relation between this geometric optical approximation and

the modal fields in the hyperbolic waveguide has been

established previously [9]. We now show how the resonant

mode solutions reduce to those in an iniinite waveguide

when the edge configuration is shaped so that V(~n,Jj) = O.

The resonant field in mode FI is given by (edge-coupling to

other modes can be neglected when losses in mode n are at a

minimum [9], [10]):

where j ~1)and f ~’) represent waves traveling in the direction

of increasing and decreasing ~, respectively. When ~.,, = O,

the resonant mocje solution becomesf~i)(c), which may be

identified with F. = D,,(z) (see (10)). provided that p. is

chosen so as to satisfy the modal resonance equation [9], [10]

where the phase referenc~ has been taken at <c.. With
r.. = O, it is required that R,, = m in (14). Referring to (12),
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one observes that this condition implies 17(~ + ip./2) = m

or

pn = i(+ + 2rn), Yrz=o, 1,2, ””” (37)

whence vb v.= —$— ip. = 2m. In terms of the eigen-

values Q of the resonator integral equation, one has

Q = exp (ip. in M) = Jf-(1/2)-2m (38)

in agreement with the geometric optical calculation [23].

For the lowest mode m = O, one has

Do(z) = exp (i~2/4) (39)

which is again in accord with the geometric optical field [23].

For the higher order modes m >0, one obtains the known

infinite mirror solution involving Hermite polynomials with

complex argument [24].3
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