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Ray-Optical Calculation of Edge Diffraction
in Unstable Resonators

CARLOS E. SANTANA, MEMBER, IEEE, AND LEOPOLD B. FELSEN, FELLOW, IEEE

Abstract—A previously developed ray-optical theory for calcula-
tion of modal reflection and coupling coefficients due to edge
discontinuities in homogeneously or inhomogeneously filled parallel-
plane waveguides is generalized to waveguides with nonplanar bound-
aries. Treated in particular are the reflections from the open ends of
a bilaterally truncated waveguide whose convex walls are confocal
hyperbolas. This open configuration serves as a model for unstable
optical resonators with cylindrical mirrors. The ray optically deter-
mined modal reflection and coupling coefficients for mirrors with
large Fresnel number are shown to reduce to those in a previously
employed local parallel-plane approximation when the Fresnel
numbers are moderate. The analysis quantifies proposed ray-optical
models for explaining the influence of edge diffraction on the
behavior of the resonant modes.

I. INTRODUCTION

Y A FAIRLY recent generalization [1], [2], it has been
Bshown how high-frequency ray-optical techniques can
be adapted to the analysis of scattering by localized discon-
tinuities (small obstacles, edges, etc.) in waveguides or ducts
filled with homogeneous or inhomogeneous dielectric
media. Basic to the technique is the ray-optical formulation
of the waveguide Green’s function, i.e., the radiation from a
source with an isotropic radiation pattern. This is then
generalized to nonisotropic sources with a radiation pattern
£(0),* where 0 is the angle measured from the waveguide axis
y. A localized discontinuity may be characterized by its
free-space diffraction pattern f(6,0;) when the incident field
is a uniform plane wave impinging from the direction 8.
When the discontinuity is placed inside the waveguide and
illuminated by an incident waveguide mode, which can
locally be decomposed into uniform plane waves with
characteristic angles 07, the resulting f (6,07 ) constitutes an
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! Although three-dimensional problems can be treated by this method,
we consider here only the two-dimensional z-independent case.
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Fig. 1. Unstable resonator with hyperbolic mirrors. The resonator axis
lies along x and the waveguide axis along y. A typical modal caustic, an
ellipse with foci at x = +d, is shown, together with one congruence of
upgoing modal rays. Ray A strikes the upper edge, and 01? is the propa-
gation angle of the corresponding local plane wave field in the jth mode.
A similar congruence of downgoing modal rays has been omitted, as has
the corresponding picture for the left half of the resonator. For very
slender caustics, all modal rays appear to originate at the foci. The edges
of the mirrors are located at 47, Ji, or { in the various coordinate
systems defined in the text; the analogous designation for the modal
caustic is p,; or {;.

equivalent nonisotropic source whose excitation of modal
fields may be calculated from the solution referred to above.
In this manner, one derives by ray-optical techniques the
modal reflection, transmission, and coupling coefficients
(the scattering matrix elements) for a discontinuity inside
the waveguide. The lowest-order, single diffraction solution
so obtained may be refined by accounting for multiple
diffraction effects due to interaction between the singly
diffracted fields and the waveguide boundaries. For details
of the method, the reader is referred to previous work
[21-[6}

The ray optical technique has already been applied to the
study of discontinuities in waveguides of various types [6],
[7]. In the present paper, it is shown how it can be applied to
the important problem of unstable open optical resonators.
Because of their good mode selectivity and large mode
volume, such structures appear to be most promising for use
with laser sources of high and even moderate gain [8]. By
recent studies performed independently in the United States
[9], [10] and the Soviet Union [11], it has been shown that
the unstable resonator can be regarded as a waveguide
whose boundaries are the convex resonator mirrors, and
whose axis is transverse to the resonator axis (Fig. 1).
Resonance in this open waveguide is established by self-
consistent reflection of a propagating waveguide mode
between the edge discontinuities formed by the rims of the
mirrors. Although the waveguide is very strongly
overmoded, it has been shown that near the cutoff condition,
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which is of interest for the resonator problem. mode cou-
pling due to the mirror edges is confined essentially to
adjacent modes. Thus a very simple model involving selec-
tive coupling between two waveguide modes has been
developed, and has been found capable of explaining the
intricate eigenmode loss behavior determined by numerical
solution of the resonator integral equation [9], [10]. While
the role of mode coupling has been alluded toin the Russian
work [11], it has not been incorporated into their analysis.
The Soviet calculations are based on a single mode analysis,
which is adequate only near eigenmode loss minima, and
does not provide the peculiar interconnections between
successive loss minima found in the numerical results.

A further attribute of our analysis [9], [10] is the avoidance
of the resonator integral equation, which forms the basis of
the Soviet approach to the waveguide problem as originally
formulated by Weinstein [12], and followed thereafter by
others in the Soviet Union [11]. [13]. By avoiding the
integral equation, it is possible to decompose the unstable
resonator problem into conventional microwave network
constituents involving propagation (waveguide) and discon-
tinuity regions. By this separation, one may also extend the
analysis to resonator configurations which are filled with
inhomogeneous and/or active materials, and to mirror
shapes which depart from the conventional circular con-
tours. These aspects are presently under investigation.

While the ray optical principle of localization is conson-
ant with the microwave network approach, the reflection
and coupling coefficients due to the mirror edges were
previously [9], [10] not calculated by the ray-optical method
described earlier. Instead, these coefficients were taken from
Weinstein [12] by modeling the region near the edges locally
as an open-ended parallel-plane waveguide. Since the ray-
optical method synthesizes the reflection and coupling
coefficients by direct edge scattering, it is of interest to
examine whether the two procedures yield the same result.
This is especially important for resonators with moderately
large Fresnel numbers,”> where the local parallel-plane
approximation near the edges 1s more difficult to justify
since the slanting of the convex waveguide boundaries is
then not negligible. it will be shown that the single-diffraction
ray optically evaluated reflection and coupling coefficients
are identical with those obtained by Weinstein from the
rigorous solution of the open-ended parallel-plane wave-
guide problem when the characteristic angle of the incident
mode is not almost 90° with respect to the waveguide walls;
this is the range of interest for the moderately large Fresnel
number regime. This confirmation then suggests that the
single diffraction ray-optical model may be used with
confidence for large and very large Fresnel numbers where
the local parallel-plane approximation is clearly in doubt.
The reflection and coupling coefficients derived here may
then be regarded as more reliable than any of those available
heretofore. Although the ray optical edge diffraction

2 The Fresnel number is defined as N = ky-/4nL; k 1s the wavenumber
and y and L are given m Fig. 1.
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Fig. 2 Bisected waveguide configuration

mechanism has been proposed as an explanation of the
numerically observed eigenmode loss behavior [14]-[16],
this fact has not been incorporated into a systematic modal
theory. Such an incorporation is performed in this paper.
The presentation follows the format outlined at the
beginning of this Introduction. The Green’s function for the
waveguide with hyperbolic boundaries is developed in
Section I1. This is followed in Section I1T by modifications
required to accommodate a nonisotropic source with radia-
tion pattern f (6). Section IV deals with the local plane-wave
decomposition of the incident mode field impinging onto the
edges of the truncated waveguide boundaries, and the
subsequent calculation of the edge diffraction pattern func-
tion f (0,07 ). This information is then utilized for extraction
of the modal reflection and coupling coefficients.
The analysis is similar to that performed previously for a
parallel-plane waveguide filled with a plane-stratified
medium [2]. However, in the present instance it is necessary
to perform a generalization to account for nonplanar
boundaries. Concluding remarks are made in Section V.

II. THE WAVEGUIDE GREEN'S FUNCTION

We seek a solution of the equation

(V2 +k)Glpp)= —dp—p)  p=(wn) (1)
subject to the boundary conditions
oG
5/;=0 at u=0 (1a)
G=0 at n= 4, (1b)

and a radiation condition at u— oc. A time dependence
exp (—iwt) is suppressed. Here, u and n are constant
coordinate surfaces in an elliptic coordinate system (Fig. 2).
The boundary condition (1b) identifies G as the single-
component electric field E = E_. and the source as a suitably
normalized line of z-directed electric currents. Since we shall
be interested only in ficld solutions which are even with
respect to the y = 0 plane, the boundary condition in (1a)
has been imposed and effectively bisects the waveguide.

In terms of waves propagating along the y (or y) direc-
tions, the Green’s function can be represented as:

G(ps') = 5 "I g 0 @)
where
Ni=[" o) an (2a)
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is the squared normalization constant for the eigenfunctions
®,(n). The latter satisfy the source-free one-dimensional
equation

L+ h¥(b2 — sin? n)] ®,(n)=0, h=ki (3)

with b, representing the modal eigenvalue and

(Dn(inl) = 0

(3a)
The one-dimensional Green’s function g,(u.x) satisfies the
source-excited equation

{;;—i; + h*(cos h*u — bﬁ)} gulpp) = =8 — 1) (4

with dg, o
dpu

radiation condition at y — co.

=0,
(4a)

The eigenfunctions ®,(n) were determined previously [9].
Assuming that the turning points 5, = +sin~' b, lie out-
side the domain —#, < 5 < #, (thisis the case for the modes
of interest), and since h is large, one may employ the WKB
approximations for @,(%):

_sin [k {1 4, (z) dr]
a7

Yal) = (b7 — sin® )" (5)

®,(1)

with b, defined by (3a) via

.M

h ’ Yo(t)dt=nm,  n=integer (5a)
tom
or approximately as [9],
b2 A2 EEEAIZ—L +1, (5b)
where kln
M=1+42y+2 e, a=y+y% y=1Lr (5)

M is the linear magnification, and y is the ratio of the
resonator half-length L, measured along the x axis, to the
radius of curvature r of the mirrors on this axis. When
the sine function in (5) is expressed as the sum of two
exponentials, and the result is then substituted into (2a), one
observes that two of the resulting integrals contribute
negligibly because of rapidly fluctuating integrands. Thus

11 dr In M 5 In M oc”z)
~- [ S s —m - 2] (6
2 o ll/,,('f) 2 (bﬂ 1) ( 8 + 4 ( )

The cvaluation of the integral in (6) is based on the
approximation b, ~ 1, which applies to the modes of interest
(see [9]).

The modal Green’s function g, (u,u) can be constructed in
terms of solutions F, and F,, which satisfy the source-free
equation (4), and the boundary conditions at g = 0 and
§ — oo, respectively [17]:

N2

ﬁn(“<)ﬁn(l‘>) -~ dﬁn O dﬁn
)= BTy L F S F, 7
9t =i ) e U
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where p. and pt. denote the lesser and greater of the values
of u and ', respectively. Since 0 < u < 1 in the range of
interest (the waveguide region is to be truncated at 7 < 1 to
form the resonator with finite mirrors), one may approxi-
mate cosh? u =~ 1 + p?. Introducing

(8)

where y,, locates the turning point (modal caustic) of the
approximated differential equation (4), one may write

e o
(d_? 7 Pn) gu(lL)=0( - 1) ©9)
with boundary conditions corresponding to (4a). The solu-
tions F, and F, are now constructed in terms of parabolic

cylinder functions [10], and yield

1
r( + i&)
an — eﬂpn/Z(zipn)___,_____

(10)
where

— 1 i
V= —35 = 1D,

(10a)

For observation points { > |{ml. = 2|pa|"? ie., far
enough from the modal caustic at {,,, one may employ the
WKB approximations for the parabolic cylinder functions

AD(z) ~ [,

. exp iJ'C da(8) dE + in/4 (11a)

L

APD_y(iz) ~ [0

©exp
¢
where
& 1/2
ADD = /2 exp [71:‘[‘7,, + 1%]
exp iz%’l(ln P — 1)} (11d)
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and the phase reference in (11a) and (11b) has been taken at
(. Defining
L .p
r Fn
exp (—in/4) ( o )

2 ipn 1 'pn
r(z —13)

one may write for (10)

o e i 6,0 di]
ST PX YN e

exp [i [i2 §u($) dE + 2i 5] 6,(S) ]
—2i[¢. ()N '

The first term in (13) represents the direct contribution from
the source point at {’ to the observation point at ¢, while the
second term describes a wave that has traveled from the
source point to the modal caustic and thence to the observa-
tion point. The reflection coefficient due to the caustic, as
seen from the observation point, is given by the ratio of the
reflected and incident waves as:

B, =

exp [ip,(1 — In p,)] (12)

+ B, (13)

s

&@%JaapPW ¢w3&} (14)

wcn

(<
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If the source is located on the lower wall or the upper wall,
one puts f(n+ 0,")=0 and f(n + 6, ) = 0, respectively
[2]; the pattern functions now represent the respective far
zone fields of the source in the presence of the boundary
whereon it is situated.
I'V. REFLECTION COEFFICIENT FOR THE
OPEN-ENDED WAVEGUIDE

A. General Formulation for Large Fresnel Numbers

When the waveguide in Fig. 2 is truncated at { =,
reflection occurs from the open end. By the ray-optical
method, the modal reflection and coupling coefficients are
calculated from the single-edge diffraction patterns. This
requires first a determination of the local plane-wave fields
that illuminate the edges. Assume that an incident field E in
the jth mode is normalized so that

Enl)~Ef(nl)+ E; (L)

where E;” and E; represent the local plane wave constitu-
ents (modal-ray congruences) traveling toward the upper
and lower boundaries. respectively.

E}i (n,C) =+ {21'N.[¢ (q)¢j(g)]1/z) 1

(19)

which has been given previously [10]. ’ e \
When the results in (5) and (13) are substituted into (2), " eXp ] Fih l ) dt + i ’ ,(¢) df’~ (19a)
one obtains the WKB approximated Green’s function for e
sin [k [ y,(t) de] sin [ 31 ¢h(c) de] exp (=i J3 ¢u($) d€) + B, exp [—i [5 @ulE) dE + 2i [5, $,(2) di] (15)
Nf[wn( Wl )] = 2i2h) [ (O)alC)] '

G~2

II1. RESPONSE TO A DIRECTIVE SOURCE

The Green’s function in (15) represents the field excited by
a line source of strength
12
)

(nklp~ p
| —in/4]. (16)

When the source has a radiation pattern f(6) so that its far
field is

Go(lo—p'|) = H“Hp pl)~

Go~ Go f1(0),

it can be shown by a generalization of the procedure in [2]
that the response in the waveguide may be calculated by
decomposing the sourcepoint dependent eigenfunction
®@,(1') into its local plane-wave constituents, and multiplying
these by f (n + 0,), where 0, are the propagation angles of
the local plane waves in the nth mode at the source point.
Thus the field G at { < ¢, produced when the directive
source in (17) is placed inside the waveguide, is given by

(17)

_ T+ O () + £+ 0, ), (o ,
=y Ut Y )N: ( Vs )5
" (18)
where ®, = u,; + u,,, and
_exp [Fih |1t Y,(z) dr
tag (1) ~ F P [21'[ i Va(r) ] (18a)

Va2

Then the strengths of the local plane-wave fields striking the
upper and lower edges are E (4,,{) and E; (—#,.0). respec-
tively; note that whenn = —y, the first exponentialin (21a)
reduces to (- 1Y, in view of (5a). The angles of incidence f}
of the local modal plane-wave fields with respect to the
tangent planes to the mirrors at the edges are obtained from
the orientation of the phase gradients (i.e., the modal rays) in
(19a); as shown in Fig. 1, the modal rays are tangent to the
modal caustic. It is shown in Appendix I that

2 1 - bl
2[ cos 1
B=14ud,  wh<l (20)

‘The dittraction field due to the upper edge, observed at an
angle f§ with respect to the tangent plane at the edge. is now
given by (17) with the pattern function

JTB™.87) = Ef (i DV(B™.B)) (1)

where V(B7,B7) is the known diffraction coefficient for a
perfectly reflecting half-plane illuminated by a unit strength
plane wave field incident at the angle §;f [19]:

V(ﬂaﬁ})z ﬁ_zﬁj + sec L_;‘Bj.

—8¢C

B+ B;¥m
(22)
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The excitation of the nth waveguide mode by the equivalent
directive line source with f*(8*,8;") located at the upper
edge involves the pattern function f(r + 6,") in (18), with
f(m+ 6,7) set equal to zero. When referred to the edge-
centered coordinate system, f(n + 0,") is equivalent to
T (B B} ). where B, is the modal ray angle for the nth mode
at the edge. Similar considerations lead to the pattern
function f(n + 6,7)—f (B, .B; ) descriptive of the lower
edge. The resulting nth mode amplitude excited by both
edges represents the coupling coefficient I';, due to an
incident jth mode field, while T';; represents the reflection
coefficient in the incident mode.

When the preceding results are substituted into (18), one
obtains for the total reflected field E,; due to an incident
mode j:

E,, ~ Y TNy, (m)d. ()] 1

sin [ ey de | exp | =i | 00| )
n Cen
where
. [+ (=17 V(B 5)
" 81'(211)1/2[1/!"('71) W (n1)ba()B (D] 2N, N
g
- exp [f | oy i] @()df] (24)
and it has been recognized that B} =g, = B,.

B = B; = ;. The reflected modal fields have here been
normalized in the same manner as the incident modein (19).
Note that the term multiplied by B, in (15) has been omitted
from (18) so as to climinate fields that arrive at the observa-
tion point after a round trip to the center of the resonator;
such fields are not relevant for determination of edge
reflection. One observes that I', = 0 for odd values ofj + n,
in conformity with requirements imposed by structural
symmetry. The exponential phase termsin (24} arise because
the phase reference has been taken at the modal caustics;
these terms are absent when the phase is referred to the edges
at { = {. The coupling coefficient I, in (24) represents the
lowest order approximation of the ray-optical solution
wherein only single (primary) diffraction at the edges is
accounted for. This result could be improved by inclusion of
multiple diffraction that occurs between the edges, but the
effect is small since the ratio of multiple to primary diffrac-
tion is O[(2kL)™ ¥/?]. The formula in (24) is valid provided
that B, + B; % m,i.e, the characteristic mode angle f3, does
not lie in the reflected-ray transition region associated with
the ray incident at the angle f;. Moreover, for validation of
primary diffraction as the dominant mechanism, one edge
should not lie in the reflected-ray transition region of the
other (this condition is more stringent than the one for
b, + B;). The necessary restrictions are derived in Appendix

B. Simplification for Moderate Fresnel Numbers

To check whether the general coupling coefficient in (24)
reduces to the local parallel-plane approximation for small
enough Fresnel numbers, and in particular for weakly
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curved mirrors (small y in (5c)), the limiting form of (24)in
that parameter range is now examined. As noted earlier, the
modes of interest are those with caustics near the center of
the resonator. Thus the edges may be taken to lie far enough
from the caustics to justify u,, , < i. Moreover, [ itself is
small. When these approximations are introduced, one
finds:

V(B,.B;) = (sgn B,)(sgn B;)
. 41 cos 1y 5
QE+1-b)+(2p° +1-57) (25a)
InM =22 axy  Ni;~al (25b)
len >
i1 gm) @ -2 - em a0 eso

Thus, when the phase reference is at the edges, (24) reduces
to
Ly ¥ —if{sn + 5)(s05,)"2] 7",

s, =209, (0) (26a)
and

r,= -

JJ ZS : (26b)

~

If account is taken of the normalization of the incident field
as in (19a), these expressions agree with the parallel-plane
formulas of Weinstein [12] for the case where §,and g, differ
sufficiently from 7/2 to ensure that one edge does not lie in
the reflected-ray transition region of the other. In that event,
single-edge diffraction is adequate to describe reflection
from the open-ended parallel-plane structure. As noted
previously [9], s, represents the modal propagation
coefficient in the equivalent parallel-plane waveguide whose
height equals that of the hyperbolic waveguide at .

When v is reduced further so that one edge does lie in the
reflected-ray transition region of the other edge, interaction
between the edges in the local parallel-plane model cannot
beignored. The single-edge diffraction function must now be
replaced by a more accurate function derived from the
rigorous solution of the semi-infinite parallel-plane
configuration. The result as given by Weinstein [20],
modified to account for the different normalization of the
incident field used here, is as follows:

Uy = —il(s, + 5;)(s,5)"?]7 " exp [Ufs,0) + Uls; )] (27)
where 6 is defined by any of the equalities

2n(j+90)  h,, _nm—2kL
UV A1 () e e v
j=0,+1,+2,---. (27a)

The diffraction function U(s.d) is discussed in detail in [20],
and has the following asymptotic behavior:

U(s.6)~0, s large (28a)
Ulsd) ~ %(m 24 2) +1n (25)
1 i
- Bs+---,  ssmall (28Db)
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Fig. 3. Ratio W of |T,,| in (24) to |T,,| in (26), with p, = 0 (minimum
mode loss condition). The calculation is carried out for the parameters
fi= 100, y = 04 as in [10].

where B = 0.824. Thus (27) reduces to (26a) when s, ; are
sufficiently large (note that this condition can be met
although y is small). For small s, ;, one has

L= —2(s, +5;)7 '(s,5;)"/* exp [ a l)zﬁ(s" a Sj)J (29)
which (noting that s, & s; here) was used in the analysis by
Chen and Felsen [9]. With formulas (24) and (27), noting the
overlap region in (26a), one may cover the entire range of
parameters from small to large Fresnel numbers for the
hyperbolic mirror resonator.

To ascertain the effect of the improved reflection
coefficient in (24), we have calculated the ratio Wof [T, | in
(24) to that in (26b). One observes from Fig. 3 that W
deviates substantially from unity even for moderate values
of the equivalent Fresnel number N, (for a definition of N,
see (34a)). Corresponding data for the losses in the
“detached” eigenmode [25] are plotted in Fig. 4. It is noted
that use of the reflection coefficient in (24) yields results
which agree more closely with the numerical solution of
Sanderson and Streifer [25] than those obtained from (26b).
Although the discrepancy in Fig. 3 between |I',,|in (24) and
(26b) is considerable, the effect on the detached resonant
mode losses in Fig. 4 is relatively small because T, is
O(1072) in that parameter regime. Nevertheless, the results
confirm the assertion that use of the ray optically deter-
mined reflection coefficient in (24) is expected to yield an
improvement over previously available formulations,
especially for large Fresnel numbers.

C. Effects of Smoothed Edges or Tapered Reflectivity

The dependence of I, in (24) on V(B,.8;) implies that the
nth mode reflected field is proportional to the strength of the
edge diffraction pattern along the direction of propagation
of the local modal plane-wave constituents in that mode. If
the edges can be shaped so that diffraction along B, is
minimal, then the resonant properties of the nth mode in the
open-ended waveguide should approach those in a wave-
guide with infinite mirrors. Since the infinite-mirror
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-Transition
region

Fig. 4. Power loss PL in the detached eigenmode of a hyperbohc strip
resonator. The calculation is carried out for 7i = 100, y = 0.4 as in [10].
use of (26b). —-— use of (24). -~ - Sanderson and Streifer

[25].

configuration has been investigated independently, it is of
interest to establish that the resonant fields derived for finite
sharp-edged mirrors reduce to those for infinite mirrors as
I';, tends to zero. This transition is performed in Appendix
I11.

V. CONCLUSIONS

A previously developed ray-optical analysis of scattering
by edge discontinuities in a parallel-plane waveguide has
here been generalized to curved waveguide boundaries.
When both boundaries are convex as in a hyperbolic
waveguide, and when the waveguide is truncated bilaterally
and symmetrically, the resulting doubly open-ended struc-
ture has found application as an unstable optical resonator.
For the determination of the resonant properties of this
open cavity, it is necessary to know the mode reflection and
coupling effects introduced by the edges. This has been done
by a generalized ray-optical technique. Accounting only for
primary edge diffraction, the resulting modal reflection and
coupling coefficients have been shown to be adequate for
resonators with large Fresnel numbers, because the contri-
bution from multiple edge diffraction is negligibly small. The
expressions so obtained are expected to be more accurate
than others employed heretofore (see Fig. 4). As the Fresnel
number is decreased, the modal reflection and coupling
coefficients reduce to those calculated for an equivalent
local parallel-plane geometry near the edges, thereby pro-
viding a smooth transition from the case of slanted, to that of
parallel boundary contours near the edges. While only
open-ended reflection has been treated here, the method
applies also to bifurcations, apertures, obstacles, etc. (for
these applications, see [7], [21]). The ray-optical approach to
edge diffraction introduces a viewpoint not usually asso-
ciated with obstacle scattering in waveguides. While ray
optical considerations have been employed for the unstable
resonator [8], [14]-{16] they have not previously been
incorporated into a systematic modal theory.

Because the diffraction process is localized near the edges,
the results presented here are applicable also to other
waveguide boundary shapes, provided that the change in the
waveguide cross section occurs sufficiently slowly, in terms
of the wavelength scale, to justify use of the WK B approxi-
mation for the wave functions. Moreover, subject to similar
criteria of slow variability, the method also accommodates
resonators filled with variable and/or active dielectrics.
These aspects are presently under study, and some results
may be found in [27].
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APPENDIX [

Determination of Propagation Directions
of Modal Local Plane Waves

In the elliptic coordinate system of Fig. 2, the WKB
phases kS, ; and kS ,;of the wave functions for the jth mode in
the # and u domains are, respectively,

2

L-sm.=h_|'"¢,.(r)df, KSy=h| $A2)de  (30)

where i = kd, ¢ (u) = (cosh® u — b?)* and ¢ (n)is givenin
(5). The modal ray congruences for y > 0 are directed along
VS;., where S; =S,;+S,;. The angle ; between an
1nc1dent modal ray and the boundary at # = #, is given by
=Ho - VS;

= (cosh? yu — b%)**(cosh?

cos fi}
12 (31)

where u, is the unit vector along . When p = g < 1, this
expression reduces to (20).

p—sin® ;)"

APPENDIX I

Restrictions for Applicability of the
Diffraction Coefficient in (22)

The exterior of the reflected-ray transition region for the
case of a plane wave incident at the angle ¢, on a perfectly
conducting half-plane is given by [19] (in this Appendix,
¢ denotes the angular coordinate)

NS ¢o|>fQ

where Q 1s a constant of the order of unity; p and
d=|¢ - ¢o| are polar coordinates with respect to the
edge, with ¢ measured from the reflected-ray direction ¢,,.

If one edge of the resonator of Fig. 1 is to be outside the
reflected-ray transition region of the other edge, then (32)
has to be satisfied for p and ¢ as indicated in Fig. 5.
Introducing the approximation that the edges of the resona-
tor are located at X = +d sin 5y, which supposes i € 1, we
find for the case b; = 1,1i.e., when the modal caustic degener-
ates into a straight line between the foci (this is relevant
near loss minima of a resonant mode [9], [10]):

(32)

p=2dsin 5, (33a)

. y .
=—— X, 33b
tan ¢ d(1 — sin ny) ¢ (33b)

Insertion of (33a) and (33b) into (32) yields the following
condition for applicability of the diffraction coefficient in
(22):

Q2 1/2
N, > (1 4 2y — 2a%/?) (34)
2my
where N,, is the equivalent Fresnel number
N 1
Neq = 3 (M - —M) (34&)
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N is the ordinary Fresnel number, and M is defined in (5¢).
The relations
1 —1/2
sin 1, = (1 + :) yd = Lot'? (34b)
14
were used in the derivation of (34).
To give some indication of the restriction implied in (34),
we note, for example, that for @ = 3 and y = 0.4, one finds

N, > 0.813. Thus (22) applies even for relatively small
values of N,

APPENDIX 111

Resonant Mode Solutions for Mirrors with Smoothed Edges

If the mirror edges at |{| = {in Fig. 1 are perturbed, or if
a tapered-reflectivity boundary is joined to the waveguide in
the region |{| > (. the analysis presented here remains
applicable provided only that V(8,.5,)in (24)is replaced by
the diffraction coefficient appropriate to the modified edge
discontinuity. Because the intricate patterns of resonant-
mode losses and resonant-mode fields are attributable to the
strong diffraction caused by sharp-edged mirrors, there has
been considerable interest in assessing the effects of a
reduction of edge scattering [14]-[16]. In particular, if edge
diffraction back toward the foci at x = +d in Fig. 1 can be
climinated, the resulting resonant-mode field should be well
approximated by the geometric optical field comprised of
two cylindrical waves emanating from the foci [22]. The
relation between this geometric optical approximation and
the modal fields in the hyperbolic waveguide has been
established previously [9]. We now show how the resonant
mode solutions reduce to those in an infinite waveguide
when the edge configuration is shaped so that V{f,.5 ) = 0.

The resonant field in mode # is given by (edge-coupling to
other modes can be neglected when losses in mode nare ata
minimum [9], [10]):

SO =120 + T 1320, (35)

where f (V) and £ represent waves traveling in the direction
of increasing and decreasing (, respectively. When I',, = 0,
the resonant mode solution becomes f{V({), which may be
identified with F, = D(z) (see (10)). provided that p, is
chosen so as to satisfy the modal resonance equation [9], [10]

R (L) =1 (36)

where the phase reference has been taken at {,. With
I, =0, itis required that R, = o in (14). Referring to (12),

(>0
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one observes that this condition implies I'(% + ip,/2) = o0
or

po=ik+2m), m=0,12 - (37
whence v— v, = —1 —ip, = 2m. In terms of the eigen-
values Q of the resonator integral equation, one has

Q = exp (ip, In M) = M~/2~2m (38)

in agreement with the geometric optical calculation [23].
For the lowest mode m = 0, one has

Do(z) = exp (il*/4) (39)

which is again in accord with the geometric optical field [23].
For the higher order modes m > 0, one obtains the known
infinite mirror solution involving Hermite polynomials with
complex argument [24].%
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